Recruitment variability of Antarctic krill in Subarea 48.1 expressed as 'proportional recruitment': length threshold effects

Kinzey D. ${ }^{\boxtimes}$, J.T. Hinke, C.S. Reiss and G.M. Watters

NOAA Southwest Fishery Science Center
8901 La Jolla Shores Dr, La Jolla, CA 92037 USA

Abstract

Proportional recruitment summarises the variability of new individuals entering a population over time. Two parameters characterising proportional recruitment, the mean and standard deviation of the interannual proportion of juveniles in the population, are important inputs to the generalised yield model (Grym) when the proportional recruitment option is being used to set fishery catches. The Grym is a simulation framework that can define the amount of fisheries catch that is considered precautionary as defined by decision rules. It is currently under consideration by CCAMLR for managing catches of Antarctic krill. This study calculated proportional recruitment of krill from seven data sources in Subarea 48.1 representing research trawl surveys, fishery observer data and predator diets. Krill length-frequency distributions provided values of proportional recruitment from each of these data sources using a range of alternative upper length bounds ('thresholds') from 30 to 44 mm for defining juveniles. All datasets tracked the same interannual peaks and troughs in proportional recruitment. Proportional recruitment parameters calculated using the alternative thresholds from the same datasets varied widely. Across all data sources and thresholds, the interannual mean proportional recruitment of krill varied from 0.02 to 0.76 with standard deviations varying from 0.03 to 0.3 . The choice of length threshold had a larger effect on the proportional recruitment parameters than differences among datasets. The potential importance of size selectivity in krill samples, especially if smaller bounds on the juvenile length threshold are assigned, could require adjusting observed frequencies for the lower selectivity of smaller individuals. These results highlight the importance of deciding which upper length bound and which data source(s) to use to identify juveniles in calculating the parameters to be supplied to the Grym.

Introduction

Recruitment, the annual production of individuals joining the pool of potentially reproductive members in a population, is highly variable in Antarctic krill, (Euphausia superba) (Siegel and Loeb, 1995; Watkins, 1999; Siegel, 2000a; Siegel et al., 2002; Quetin and Ross, 2001, 2003; Kinzey et al., 2013, 2019). Recruitment parameters are important inputs to the generalised yield model (GYM), a modeling framework that makes future projections of krill abundance and
variability under different levels of catch from a population determined by the model's input values (de la Mare, 1994a, 1994b; Constable and de la Mare, 1996). An R-version of the GYM (the Grym) has been developed (Maschette et al., 2020, 2021) ${ }^{1}$. The effects of the different catches on the simulated population are compared in the Grym to CCAMLR decision rules (Constable et al., 2000), which define the amount of krill catch considered 'precautionary' based on the simulation results.

The GYM is a simulation model. Unlike statistical stock assessment models such as Casal2 (Bull et al., 2004), stock synthesis (Methot and Wetzel, 2013) or similar frameworks that formally quantify the uncertainty of model estimates by using a likelihood function (Hilborn and Mangel, 1997), simulation models do not quantify uncertainty. The likelihood function in statistical models compares model estimates to the data to assess the model 'fit' for candidate parameter estimates, whereas in simulation models all inputs are assumed known.

Quetin and Ross (2001) noted that the percentage of the krill population reproducing during the seven-year time series they studied in the Palmer Long-Term Ecological Research (LTER) study area from 1993 to 1999 varied from 10 to 98% annually, suggesting that immature individuals composed 2 to 90% of the standing stock in any given year. Quetin and Ross (2003) describe krill recruitment as 'episodic', suggesting that two strong year classes in succession are typically followed by three or four moderate or poor year classes. Similar patterns in year-class strength for krill have been observed in the Elephant Island region between 1976 and 1996 (Loeb et al., 1997). Krill under natural conditions can live five to eight years (Siegel, 2000b; Nicol, 2000), so the oldest age classes are largely a product of intermittent strong cohorts.

Recruitment can be represented using three separate options in the Grym: lognormal recruitment; a vector of absolute recruitment; or proportional recruitment. The option currently agreed upon by the Scientific Committee of CCAMLR for advising on management of the krill fishery is proportional recruitment.

Proportional recruitment represents the proportion of juveniles in the population and its variability, parameterised by specifying a mean and a standard deviation (SD). It is calculated as the interannual proportion of all individuals younger than, or equal to, a particular age class to all individuals in the population. The values of proportional recruitment have a large effect on the precautionary yield ('gamma', the proportion of unfished biomass that can be harvested annually

[^0]while meeting the CCAMLR decision rules) calculated using the outputs from the Grym. The proportional recruitment input values are largely responsible for the range of gamma values from 0 to 0.11 in the 36 scenarios reported in Table 5 of Maschette et al. (2021). For example, when the mean of proportional recruitment is 0.3 and the SD is 0.3 in a model otherwise configured as scenario 1 in Maschette et al. (2021), the precautionary gamma is 0 , or no catch allowed by the decision rules. When the mean is 0.4 and the SD is 0.3 in an otherwise similarly configured input file, the precautionary gamma is $0.04,4 \%$ of unfished biomass (approximately 2.4 million tonnes catch given current estimates of krill biomass).

Juvenile krill have been identified for the GYM and Grym using several alternative approaches to define the juvenile life stage. These have been based either on estimated age ('R1' and 'R2' for ages 1 and 2, respectively), or directly from length data as the upper bound for juveniles (e.g. 'F35' or 'F40' for 35 or 40 mm krill). When krill ages are used as inputs, they are derived from length data that are assumed to be composed of mixtures of normal distributions of length at each age (e.g. Macdonald and Pitcher,1979; de la Mare, 1994a). There is no currently accepted method of aging krill directly.

A challenge to identifying juveniles by using a single length as an upper bound and then calculating a mean and SD for the frequency proportions at that bound is that krill actually mature over a range of lengths and ages, depending on local conditions such as ice coverage and chlorophyll density (Quetin and Ross, 2001; Brown et al., 2010; Kawaguchi, 2016). Female krill can begin spawning at age $2+$ around the Antarctic Peninsula and age 3+ in the Antarctic Indian Ocean (Siegel and Loeb, 1994; Table 1 in Siegel, 2000b) but west of the Antarctic Peninsula krill usually do not reproduce until their fourth summer (Quetin and Ross, 2001). Males spawn a year later than females (Siegel, 2000b).

Reported catches of krill by the fishery from observer data during 2015-2020 have been predominately from CCAMLR Subarea 48.1 along the Antarctic Peninsula (49\%) and Subarea 48.2 west of the South Orkney Islands (32%) (Table 3 in CCAMLR Fishery Report 2020). This study compares multiple indices of proportional recruitment calculated using different length thresholds separating juvenile and mature krill sampled from research trawl surveys, predator diets and the fishery in Subarea 48.1.

This study empirically tested the choice of length threshold on the input data values of proportional recruitment for krill in Subarea 48.1. The range of means and SD of proportional recruitment summarising complete length-frequency distributions that were obtained using multiple datasets of
interannual krill length-frequencies are compared and contrasted. The potential effects of two types of selectivity are considered.

Methods and Results

The mean and SD of proportional recruitment available for each data source were calculated separately by year and combined over all years. Proportional recruitment for each year y was the mean of the proportional recruitment in each sample \bar{p}_{y} (each trawl in the surveys, or each lavage or spill sample around a juvenile feeding event by a penguin parent) collected during year y :

$$
\bar{p}_{y}=\frac{\sum_{1}^{s} d_{s t} / d_{s T}}{s_{y}}
$$

where
$d_{s t}$ is the sum of the numerical densities (for trawls) or counts (for predator diets) for the length bins \leq the threshold length in sample s,
$d_{S T}$ is the sum of the numerical densities or counts for all length bins in sample s, and s_{y} is the number of samples collected in year y.

The mean of all years for each data source was:

$$
\frac{\sum_{y} \bar{p}_{y}}{n_{y}}
$$

where

$$
n_{y} \text { is the number of years available for the data source. }
$$

Length frequencies for the fishery observer data were calculated as described by the CCAMLR Secretariat (2001), with additional vessel-specific catch weightings to account for differences among individual ships and between traditional and continuous trawls. Proportional recruitments from these fishery length-frequency distributions were then calculated for different length thresholds using equations. (1) and (2) above.

Different length thresholds affected the value of $d_{s t}$ and hence $\sum_{1}^{s} d_{s t} / d_{s T}$ in equation (1). The purpose of comparing proportional recruitment values derived from different thresholds is to
illustrate the effect of the choice of juvenile maximum length on the Grym input parameters obtained.

Information sources for proportional recruitment

This study examined seven sources of data on krill length frequencies from Subarea 48.1 in January. These are the fishery observer data, two research trawl surveys and predator diets from four long-term studies of three penguin species. Most of these data sources were sampled for ≥ 20 years (Table 1). All data sources had multiple years with samples in January but not in other months. Comparing January samples allowed length frequencies to be compared among sources for the same month. The fishery length-frequency data were only available for eight years from 2011 to 2019 with no January samples in 2017. Proportional recruitments from the LTER trawl surveys from 2009 to 2019 extend an earlier time series of LTER trawl proportional recruitments from 1990 to 2011 reported in Figure 3b of Conroy et al., 2020. Although the time series in Table 1 depict different portions of the complete 31-year interval and different spatial regions of the Antarctic Peninsula (Figure 1), these seven-time series are all long enough to sample at least one of the five- to six-year recruitment cycles proposed by Quetin and Ross (2003), even when they are not overlapping.

The LTER diet dataset of Adélie penguins (Pygoscelis adeliae) had length bins ranging from 16.2 to 61.65 mm in 5.05 mm intervals. These were split into juveniles using the 1 mm threshold considered in the study by grouping all the LTER bins from the first bin (endpoints 16.2 and 21.25 mm) with all LTER bins that were less than, or equal to, the juvenile threshold.

Table 1: Data sources for krill January length-frequency distributions in Subarea 48.1 used in this study. N indicates the number of years measured and bin size indicates the units in which krill lengths were measured for each data source. US AMLR indicates the US Antarctic Marine Living Resources Program and Palmer LTER indicates the US Palmer Long-Term Ecological Research Program. Trawl data were converted to densities based on volume sampled. Proportional recruitments from the penguin data were calculated from the length-frequency ratios of krill in the diets each year.

Source	years	N	bin size (mm)
US AMLR trawl surveys	$1991-2011$	20	1

Palmer LTER trawl surveys 2	$2009-2019$	11	1
CCAMLR fishery observer data	$2011-2016,2018-2019$	8	2
US AMLR chinstrap diets	$1993-2020$	28	1
US AMLR gentoo diets	$1993-2021$	29	1
US AMLR Adélie penguin diets	$1993-2022$	30	1
Palmer LTER Adélie diets	$1992-2018$	27	5.05

Figure 1: Approximate sampling locations of the seven data sources on interannual variability of krill length-frequencies northwest of the Antarctic Peninsula. Subarea 48.1 boundaries indicated by black lines. Hatched blue boxes enclose the US AMLR trawl survey locations (four boxes around and northeast of ' CS and ' CP ') and the LTER trawl survey locations (box around ' P ').

[^1]The point P is the Palmer LTER station (Adélie penguins), CS is US AMLR Cape Shirreff station (chinstrap and gentoo penguins) and CP is US AMLR Copacabana station (chinstrap, gentoo and Adélie penguins). The Subarea 48.1 fishery is concentrated mostly to the south and north of the US AMLR stations. Not all predator and trawl stations were sampled every year.

Krill growth, maturity and alternative length thresholds

In recent parameterisations of the Grym, the period for krill growth is defined as 21 October to 12 February, with spawning occurring 15 December to 15 February (Appendix 1 in Maschette et al., 2021). A variety of krill lengths at maturity (the length range at which 50% of krill transform from juvenile to adult) in Area 48 was reported to SC-CAMLR working groups in 2021 (Table 2). These input maturity ranges provide a width and slope for ramp-shaped maturity inputs assigned to the population in the Grym. Different values for length at maturity will produce different parameterisations of proportional recruitment from the same length-frequency dataset because length at maturity defines the threshold between lengths that are considered juvenile and those considered mature.

Table 2: CCAMLR documents reporting minimum and maximum krill lengths (mm) at 50% maturity and their range. Lengths are rounded to the nearest mm . Range is the total range of lengths over which some individuals are mature.

Authors	Reference	min 50\%	max 50\%	range
Thanassekos et al., 2021	WG-SAM-2021/12 Figure 3	26	30	6
Maschette et al., 2020	SC-CAMLR-39/BG/19 Table 2	34	40	12
	WG-FSA-2021/39 Table 2			
Maschette et al., 2021	(2010)	32	37	6
	WG-FSA-2021/39 Table 2			
Maschette et al., 2021	(2021)	38	44	9

A von Bertalanffy growth model connects the length-based maturity thresholds in Table 2 to krill ages as modelled in the Grym. In 2021, the von Bertalanffy parameters used to model krill growth in the Grym that predict mean length from age were modified from previous values of $L_{i n f}=60.8$ and $k=0.45$ used during WG-EMM-2010 to new values of $L_{\text {inf }}=60$ and $k=0.48$ (Maschette et al., 2021).

The 2010 growth values were accompanied by a length range at 50% maturity from 32 to 42 mm whereas the 2021 growth values were accompanied by lengths at 50% maturity from 37.6 to 44.3 mm . Thus the 50% maturity range from 2021 is shifted to larger and older krill compared to the range from 2010 (Figure 2).

Figure 2: Krill von Bertalanffy length at ages 1 to 7 (blue points), as used in a recent parameterisation of the Grym, on 1 November for $L_{i n f}=60 \mathrm{~mm}$ and $k=0.48$. The length and age ranges for 50% maturity for the parameterisation used in 2010 (red box) and in 2021 (blue box) are shown for comparison.

The means and SDs of proportional recruitment derived from seven datasets (Table 1) using five length thresholds ($30,35,38,40$ and 44 mm) to separate juvenile and adult krill were calculated. These thresholds span the range of maximum lengths at 50% maturity reported in recent CCAMLR documents (Table 2).

Length-frequency distributions in AMLR trawl surveys and the fishery

The mean and SD of proportional recruitment summarise length-frequency distributions measured through time. Examination of the complete distributions can help understand the linkage between the length-frequency data and these summary parameters. The fishery observer data from January were shifted towards larger krill relative to the research trawls (Figure 3). The US AMLR trawl survey data displayed high densities of krill less than 30 mm in length for one or two years starting in 1992, 1996, 2002, 2007 and 2011 (Figure 3a). The fishery data collected very few individuals less than 30 mm (Figure 3b).
(a)

Figure 3: Length-frequency proportions for krill from: (a) US AMLR research trawls (January, 1991 to 2011), and (b) fishery observer samples (January, 2011 to 2019). Blue dashed horizontal lines at 30 and 44 mm indicate the outer boundaries of the length thresholds used for computing the mean and SD of proportional recruitment. The proportions in each year sum to one.

Proportional recruitment mean and SD for each data source

This study computed the mean and SD of proportional recruitment over all years available for each data source for both of the 30- and 44-mm thresholds (Figure 4 and Table 3). The fishery data for the standard trawl and continous fishing systems were standardised and calculated by the CCAMLR Secretariat as described in WG-SAM-2021/07. The LTER and AMLR trawls were standardised for volume sampled and integrated over depth to produce density lengthfrequencies. The measured length frequencies from the predator data were used without being standardised for volume because the volume sampled by the predators was unknown.

The range of means and SD for proportional recruitment were lower when juveniles were defined as krill $\leq 30 \mathrm{~mm}$ (estimated age 1.4 years using the von Bertalanffy parameters considered here) than when juveniles were defined as krill $\leq 44 \mathrm{~mm}$ (estimated age 2.8 years). For the 30 mm threshold, the mean proportional recruitment ranged from 0.02 to 0.45 , and the SD ranged from about 0.03 to 0.22 (Table 3). For the 44 mm threshold, the range of mean proportional recruitment was 0.48 to 0.76 , and the range of SD increased to 0.2 to 0.3 (Table 3).

Figure 4: Proportional recruitment annual means (x-axis) and SDs (y-axis) for the seven January data sources (Table 1) when: (a) juveniles are defined as $\leq 30 \mathrm{~mm}$, and (b) juveniles are defined as $\leq 44 \mathrm{~mm}$. Legend definitions: gepeng = gentoo penguin diets sampled by the US AMLR Program; chpeng = chinstrap penguin diets sampled by the US AMLR Program; adpeng = Adélie penguin diets sampled by the US AMLR Program; adpeng.LTER = Adélie penguin diets sampled by the Palmer LTER; fsh. 481 = fishery observer data; amlr.trwl $=$ research trawl data collected by the US AMLR Program; lter.trwl = research trawl data collected by the Palmer LTER.

Table 3: Mean and SD of proportional recruitment for the seven data sets when the juvenile length threshold is 30 and 44 mm . Data source names as for Figure 4. Proportional recruitment parameters from the combined AMLR and LTER trawl datasets are labelled as amlr\<er.trwl. Lengths from the combined US AMLR penguin species diets are amlr.peng.all (krill lengths from LTER Adélie penguin diets were measured in units of 5 mm so were not combined with the 1 mm binned US AMLR samples).

	Threshold 30mm			Threshold 44mm sources		mean	SD		mean	SD
gepeng	0.024	0.035	0.511	0.222						
chpeng	0.033	0.037	0.581	0.249						
adpeng	0.068	0.078	0.72	0.213						
adpeng.LTER	0.09	0.078	0.685	0.258						
fsh.481	0.022	0.022	0.542	0.3						

amlr.trwl	0.154	0.122	0.481	0.218
Iter.trwl	0.449	0.224	0.764	0.196
amIr\&Iter.trwl	0.259	0.217	0.582	0.249
amlr.peng.all	0.038	0.04	0.576	0.228

To further explore the effect of different juvenile threshold values on the mean and SD of proportional recruitment from these datasets, proportional recruitment was calculated at three additional juvenile length thresholds: 35, 38 and 40 mm , and the results plotted (Figure 5). Proportional recruitment increased as the length threshold for juveniles increased for all datasets (the plateau in the Palmer LTER Adélie penguin diet mean and SD from 38 to 40 mm is an artifact of the 5 mm bin size in that dataset). The SDs increased with the length threshold for gentoo penguins, chinstrap penguins, AMLR trawls and the fishery. The SDs peaked as thresholds increased and then decreased at the highest thresholds for Adélie penguins at both sites and for LTER trawls.

The fishery data started out with the lowest SDs of all the datasets at thresholds of 30 and 35 mm but had the highest SD of all the datasets by the 44 mm threshold. The low means and SDs at the smallest thresholds in the fishery samples were because these samples contained very few small krill (Figure 3b).
(a)

Proportional recruitment with different juvenile length thresholds

juvenile max length (mm)
(b)

SD Proportional recruitment with different juvenile length thresholds

Figure 5: Proportional recruitment interannual: (a) mean, and (b) SD for the seven datasets at five different length thresholds separating juvenile and mature krill. Legend definitions are as for Figure 4.

Seven time series of proportional recruitment

Evaluating interannual variations in proportional recruitment revealed useful information about recruitment variability in krill, especially when temporal patterns in the peaks and troughs of the annual values were compared among datasets (Figure 6). Research trawls and fishery samples have been separated from penguin diet samples in Figure 6 to better resolve the patterns for the individual data sources, but the peaks and troughs in proportional recruitment coincided in all seven datasets, indicating they were tracking the same variability in the time series of krill length frequencies in the population. However, there were consistent differences in the magnitude of annual proportional recruitment among the datasets. For example, annual proportional recruitments estimated from the fishery observer data were lower than those from Palmer LTER research trawls during the same years, especially for the 30 mm threshold (Figure 6a).
Proportional recruitment computed from gentoo penguin diets generally had lower peak means than the means computed from other data sources for the same juvenile length threshold, while proportional recruitment from Adélie penguin diets in both the Palmer LTER and US AMLR samples generally had the highest peaks (Figure 6).
(a)
(b)

AMLR \& LTER trawls, Fishery

AMLR \& LTER trawls, Fishery

Figure 6: Time series of proportional recruitment from research trawls conducted by the US AMLR (amlr.trwl) and Palmer LTER (lter.trwl) Programs and the fishery with juvenile krill (top panels) and from four penguin diet datasets with juvenile krill defined as (a) $\leq 30 \mathrm{~mm}$, and (b) $\leq 44 \mathrm{~mm}$.

Discussion

Consistent with the findings of Quetin and Ross (2001) and Loeb et al. (1997), data collected by the US AMLR Program trawl surveys and penguin diets and LTER trawl surveys and penguin diets show strong recruitment events lasting over a two- or three-year period separated by periods of recruitment failure subsequently lasting approximately three years (e.g. Figure 3a and Figure 6). Several of these cycles occur in the data, with peak proportions of recruits starting in 1992, 1996, 2002, 2007 and 2011. Cohorts resulting from such strong recruitment events can be followed for several years in the complete length-frequency distributions after most of these events.

The variability in recruitment expected over a 21-year projection period will likely be underestimated by datasets that only span a few years. The oscillating peaks and troughs of annual proportional recruitment in the seven datasets considered here required five or six years to track a single complete cycle (Figure 6).

Identifying which values for the mean and SD of proportional recruitment of krill to use in the Grym for calculating a precautionary yield has not been resolved by this study. Summarising
time series of length-frequency distributions such as those evident in Figure 3 with a single mean and SD for each dataset discards potentially usable information in the krill length-frequency samples. As the length threshold separating juveniles and mature krill was reduced in this study, the mean and SD of proportional recruitment also decreased (Figure 4). This was particularly noticeable for datasets such as the fishery length frequencies, which had the lowest SD for proportional recruitment of the seven datasets at a 30 mm threshold (0.022) but the highest SD at a 44 mm threshold (0.3).

The differences in the smallest krill obtained in the research trawl and fishery samples indicate different length selectivity patterns for research trawls and the fishery (Figure 3). Differences in selectivity were also apparent in the penguin data, where gentoo penguins usually had lower peaks in proportional recruitment than Adélie penguins, and chinstrap penguins were intermediate (Figures 4 and 5).

Sample selectivity can be separated into two processes, 'target' (sometimes called 'gear') selectivity (the samples have differing probabilities of capturing different sizes of krill that are present in the regions sampled) and 'availability' (krill of specific sizes in the population do not occur in the region being sampled) (Crone et al., 2014; Punt et al., 2013; Kinzey et al., 2015). Both types of selectivity can act jointly to affect length-frequency distributions observed at a particular place and time. Since all large krill were once smaller krill, if small krill do not occur in a sample dataset in sufficient proportions to supply the observed cohort abundances of older individuals, at least one of these two types of selectivity must be occurring.

As has already been noted, the fishery catches few krill $<30 \mathrm{~mm}$ in length (Figure 3b), so juvenile/mature length boundaries near 30 mm should not be expected to track recruitment in the fishery samples unless low selectivity for smaller individuals is accounted for. Gear selectivity by commercial trawls has been estimated to be about 0.25 for 30 mm krill, about 0.75 for 35 mm krill and increasing steeply for krill $<30 \mathrm{~mm}$ (Figure 8 in Krag et al., 2014). Dividing the original counts in the observer samples by selectivity-at-length to correct for gear selectivity's effect on the observed length frequencies would increase 30 mm krill fourfold and 35 mm krill by a 1.33 multiplier in the local krill length frequencies being sampled by the trawls. Dividing the numbers of all krill at length in the samples by their selectivities would correct for gear selectivity. However, this would not address the availability component of selectivity if the fishery samples are obtained from locations biased toward krill of particular sizes.

An appropriate length threshold to use for representing juveniles could possibly be selected using maturity data such as are routinely collected during trawl surveys (Reiss, 2016). Such thresholds would likely be at the smaller krill lengths that are underrepresented due to selectivity, making correcting the samples for selectivity increasingly important as the length at maturity in the Grym is reduced. The research surveys sampled a stationary grid over many years regardless of krill density at each station while the fishery targets areas of high density and sizes/stages that are best for processing. Adding a fixed series of randomly selected stations in the future to measure length distributions by the fishery before fishing commences could reduce the selectivity of using data from targeted catches to represent the population.

Conclusions

Capturing the complexities of krill recruitment dynamics using the mean and SD of the proportion of individuals sampled smaller than a single length threshold is a challenge. Various thresholds for the length boundary between juvenile and mature krill have been proposed. This study demonstrated that a wide range of proportional recruitment parameters are obtainable from different assumptions about the length threshold separating juveniles and mature krill in lengthfrequency sampling data. Which of these thresholds is actually used to calculate the inputs to the Grym will have a large impact on the precautionary yield that is obtained (e.g. Table 5 in Maschette et al., 2021). As the length threshold separating juveniles and adults decreased, the mean and SD of proportional recruitment calculated from a particular data source also decreased. However, smaller individuals have lower selectivities than larger krill for most or all of the sampling approaches (i.e. research trawls, commercial trawls and penguin diets) considered here, so as the threshold separating juveniles and adults decreases, the importance of selectivity underrepresenting small krill increases.

Estimates regarding krill population dynamics using proportional recruitment might be improved by analytical methods not used in this study. The effect of selectivity on estimating proportional recruitment in any given year can be addressed by dividing the observed numbers of small individuals in a length-frequency distribution by the length-specific selectivity of the given sampling approach before calculating proportional recruitment.

The current Grym simulation of the krill stock requires the proportional recruitment to be a single distribution of proportional recruitments with the same mean and SD. Although separate simulations of trials with proportional recruitment randomly selected from different length-
frequency distributions may be modelled, there is currently no way to model proportional recruitments stemming from a range of maturity thresholds in a single set of trials in the Grym. Modeling ranges in the mean and SD of proportional recruitment associated with different lengths at maturity instead of using a single length threshold could potentially be addressed by supplying a different proportional recruitment mean $\left(\bar{R}_{t}\right)$ and standard deviation $\left(\sigma_{t}\right)$ for each trial t. These trial-specific values could be obtained using a single random draw from a uniform distribution between the minimum and maximum values of plausible single length thresholds (equation 3), but this would need to be implemented in the code and the ranges of mean and SD values to use would need to be identified.

$$
\begin{align*}
& \bar{R}_{t} \sim U(\min (\bar{R}), \max (\bar{R})), \tag{3}\\
& \sigma_{t} \sim U(\min (\sigma), \max (\sigma))
\end{align*}
$$

where
the minimum and maximum \bar{R} and σ bounds are obtained from empirical studies.

A final point is that proportional recruitment is not the only way to model recruitment. The Grym itself has two other options for recruitment, lognormal and a vector of abundances option. Whether any of these three Grym options are capable of representing the actual patterns of recruitment that are evident in the length-frequency data, exhibiting correlations among strong recruitment years and intermittent years of recruitment failure, is arguable. Other options exist for modelling the complete length-frequency distributions of recruitment through time, such as fitting length-frequency data to a multinomial or a Dirichlet distribution (e.g. Candy, 2008). Using a statistical modeling framework (e.g. Bull et al., 2004; Methot and Wetzel, 2013; Doonan et al., 2015; Kinzey et al., 2018) in which a likelihood function connects the model and data, instead of simulation modelling where model inputs are treated as known quantities, is also possible, but such alternatives are beyond the scope of this paper.

Data and code availablity

The datasets and R-scripts used to produce the results reported in this paper are available at https://github.com/us-amlr/krill-proportional-recruitment.

Funding

The US AMLR program is base-funded by the US Government.

Acknowledgements

We thank the CCAMLR Secretariat for providing the krill length frequencies from the fishery observer database, George Cutter for review and discussion of the manuscript and Megan Cimino and Jack Conroy for discussions of the relationships of the Palmer LTER data to the other datasets. The Palmer LTER trawl data were provided by the Palmer Station Antarctica LTER and D. Steinberg.

References

Brown, M., S. Kawaguchi, S. Candy and P. Virtue. 2010. Temperature effects on the growth and maturation of Antarctic krill (Euphausia superba). Deep-Sea Res. II, 57: 672-682, doi: https://doi.org/10.1016/j.dsr2.2009.10.016.

Bull, B., R.I.C.C. Francis, A. Dunn, A. McKenzie, D.J. Gilbert and M.H. Smith. 2004. CASAL (C++ algorithmic stock assessment laboratory): CASAL User Manual v2.07-2005/06/23. NIWA Technical Report, 126: 261 pp.

Candy, S.G. 2008. Estimation of effective sample size for catch-at-age and catch-at-length data using simulated data from the Dirichlet-multinomial distribution. CCAMLR Science, 15: 115-138.

SC-CAMLR. 2020. Fishery Report: Euphausia superba in Area 48. CCAMLR, Hobart, Australia: 30 pp. Available at: https://fishdocs.ccamlr.org/FishRep_48_KRI_2020.pdf.

CCAMLR Secretariat. 2021. Antarctic krill proportional recruitment indices (2010-2020) in Subareas 48.1-48.3 from the observer data. Document $W G-S A M-2021 / 07$. CCAMLR, Hobart, Australia: 13 pp.

Conroy, J.A., C.S. Reiss, M.R. Gleiber and D.K. Steinberg. 2020. Linking Antarctic krill larval supply and recruitment along the Antarctic Peninsula. Integrative and Comparative Biology, 60 (6): 1386-1400, doi:10.1093/icb/icaa111.

Constable, A.J. and W.K. de la Mare. 1996. A generalised model for evaluating yield and the long-term status of fish stocks under conditions of uncertainty. CCAMLR Science, 3:3154.

Constable, A.J., W.K. de la Mare, D.J. Agnew, I. Everson and D. Miller. 2000. Managing fisheries to conserve the Antarctic marine ecosystem: practical implementation of the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). ICES J. Mar. Sci., 57: 778-791.

Crone, P., M. Maunder, J. Valero, J. McDaniel and B. Semmens. 2014. Selectivity: theory, estimation, and application in fishery stock assessment models. CAPAM Workshop Report 1, 158, doi: 10.1016/j.fishres.2014.03.017.
de la Mare, W.K. 1994a. Modeling krill recruitment. CCAMLR Science, 1: 49-54.
de la Mare, W.K. 1994b. Estimating krill recruitment and its variability. CCAMLR Science, 1: 55-69.

Doonan, I, A. Dunn and K. Large. 2015. CASAL²: a replacement for CASAL as a stock assessment productivity tool. ICES CM 2015/A:13.

Hilborn, R. and M. Mangel. 1997. The Ecological Detective: Confronting Models With Data. Princeton University Press. ISBN: 9780691034973.336 pp

Kawaguchi, S. 2016. Reproduction and larval development in Antarctic Krill (Euphausia superba). In: Siegel, V. (Ed.). Biology and Ecology of Antarctic Krill. Advances in polar Ecology. Springer, Cham, doi: https://doi.org/10.1007/978-3-319-29279-3_6.

Kinzey, D., G. Watters and C. Reiss. 2013. Effects of recruitment variability and natural mortality on generalised yield model projections and the CCAMLR decision rules for Antarctic krill. CCAMLR Science, 20: 81-96.

Kinzey, D., G.M. Watters and C.S. Reiss. 2015. Selectivity and two biomass measures in an agebased assessment of Antarctic krill (Euphausia superba). Fis. Res.,168: 72-84, doi: http://dx.doi.org/10.1016/j.fishres.2015.03.023.

Kinzey D., G.M. Watters and C.S. Reiss. 2018. Parameter estimation using randomized phases in an integrated assessment model for Antarctic krill. PLOS ONE, 13 (8): e0202545, doi: https://doi.org/10.1371/journal.pone. 0202545 .

Kinzey D., G.M. Watters and C.S. Reiss. 2019. Estimating recruitment variability and productivity in Antarctic krill. Fis. Res., 217: 98-107, doi: https://doi.org/10.1016/j.fishres.2018.09.027.

Krag, L.A., B. Herrmann, S.A. Iversen, A. Engås, S. Nordrum and B.A. Krafft. 2014. Size selection of Antarctic krill (Euphausia superba) in trawls. PLOS One, doi: https://doi.org/10.1371/journal.pone. 0102168.

Loeb, V., V. Siegel, O. Holm-Hansen, R. Hewitt, W. Fraser, W. Trivelpiece and S. Trivelpiece. 1997. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature., 387: 897-900.

Macdonald, P.D.M. and T.J. Pitcher. 1979. Age groups from size-frequency data: A versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Bd. Can., 36 (8): 9871001, doi: https://doi.org/10.1139/f79-137.

Maschette, D., S. Wotherspoon, C. Pavez, P. Ziegler, S. Thanassekos, K. Reid, S. Kawaguchi, D. Welsford and A. Constable. 2020. Generalised R Yield Model (Grym). Document SC-CAMLR-39/BG/19. CCAMLR, Hobart, Australia: 27 pp.

Maschette, D., S. Wotherspoon, S. Kawaguchi and P. Ziegler. 2021. Grym assessment for Subarea 48.1 Euphausia superba populations. WG-FSA-2021/39. CCAMLR, Hobart, Australia: 26 pp .

Methot, R.D and C.R. Wetzel. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fis. Res., 142: 86-99, doi: https://doi.org/10.1016/j.fishres.2012.10.012.

Nicol, S. 2000. Understanding krill growth and aging: the contribution of experimental studies. Can. J. Fish. Aquat. Sci., 57 (S3): 168-177, doi: 10.1139/cjfas-57-S3-168.

Palmer Station Antarctica LTER and D. Steinberg. 2020. Zooplankton collected with a 2-m, 700um net towed from surface to 120 m , aboard Palmer Station Antarctica LTER annual cruises off the western Antarctic Peninsula, 2009-2019. ver 7. Environmental Data Initiative, doi: https://doi.org/10.6073/pasta/434b2f73803b9d3d8088cd094cf46cca.

Punt, A.E., F. Hurtado-Ferro and A.R. Whitten. 2013. Model selection for selectivity in fisheries stock assessments. Fis. Res., 158: 124-134, doi: http://dx.doi.org/10.1016/j.fishres.2013.06.003.

Quetin, L.B. and R.M. Ross. 2001. Environmental variability and its impact on the reproductive cycle of Antarctic krill. Amer. Zool., 41 (1): 74-89.

Quetin, L.B. and R.M. Ross. 2003. Episodic recruitment in Antarctic krill Euphausia superba in the Palmer LTER study region. Mar. Ecol. Prog. Ser., 259: 185-200.

Reiss, C.S. 2016. Age, growth, mortality, and recruitment of Antarctic krill, Euphausia superba. In: Siegel, V. (Ed.). Biology and Ecology of Antarctic Krill. Advances in Polar Ecology. Springer, Cham, ISBN: 978-3-319-29279-3.

Siegel, V. and V. Loeb. 1994. Length and age at maturity of Antarctic krill. Ant. Sci. 6: 479-482

Siegel, V. 2000a. Krill (Euphausiacea) demography and variability in abundance and distribution. Can. J. Fish. Aquat. Sci., 57 (Suppl. 3): 151-167.

Siegel, V. 2000b. Krill (Euphausiacea) life history and aspects of population dynamics. Can. J. Fish. Aquat. Sci., 57 (Suppl. 3): 130-150.

Siegel, V. and V. Loeb. 1995. Recruitment of Antarctic krill (Euphausia superba) and possible causes for its variability. Mar. Ecol. Prog. Ser., 123 (1-3): 45-56.

Siegel V., B. Bergström, U. Mühlenhardt-Siegel and M. Thomasson. 2002. Demography of krill in the Elephant Island area during summer 2001 and its significance for stock recruitment. Ant. Sci., 14 (2): 162-170.

Thanassekos, S., K. Reid, S. Kawaguchi, S. Wotherspoon, D. Maschette, P. Ziegler, D. Welsford, G. Watters, D. Kinzey, C. Reiss, C. Darby, P. Trathan, S. Hill, T. Earl, S. Kasatkina and Y.-P. Ying. 2021. Grym parameter values for Subareas 48.1, 48.2 and 48.3. Document $W G-S A M-2021 / 12$. CCAMLR, Hobart, Australia: 8 pp .

Watkins, J.1999. A composite recruitment index to describe interannual changes in the population structure of Antarctic krill at South Georgia. CCAMLR Science., 6: 71-84.

[^0]: ${ }^{1}$ https://github.com/ccamlr/Grym_Base_Case/tree/Simulations.

[^1]: ${ }^{2}$ Palmer Station Antarctica LTER and Steinberg, 2020.

